Electrﬁnm&mmmwww_&ﬁcﬁow
URL: http://www.elsevier.nl/locate/entcs/volume68.htm]] 15 pages

Justifying Equality ®

Leonardo de Moura, Harald Ruef}, and Natarajan Shankar

SRI International, Computer Science Laboratory,
338 Ravenswood Avenue, Menlo Park, CA 94025, USA
{demoura,ruess,shankar} Qcsl.sri.com

Abstract

We consider the problem of finding irredundant bases for inconsistent sets of equalities
and disequalities. These are subsets of inconsistent sets which do not contain any literals
which do not contribute to the unsatisfiability in an essential way, and can therefore be
discarded. The approach we are pursuing here is to decorate derivations with proofs and
to extract irredundant sets of assumptions from these proofs. This requires specialized
operators on proofs, but the basic inference systems are otherwise left unchanged. In
particular, we include justifying inference systems for union-find structures and abstract
congruence closure, but our constructions can also be applied to other inference systems
such as Gaussian elimination.

1 Introduction

Constraint solving has many applications, including the discovery of abstraction
predicates in protocol and software verification [fJ] and for lazy combinations for
planning [[3] and formal verification [[J2f,H]. The effectiveness of these con-
straint solving problems depends on identifying “small” inconsistent subsets of
constraints.

We therefore consider the problem of finding an irredundant basis for an in-
consistent set I' of equalities and disequalities. These are subsets of I' which do
not contain any redundant literal, that is, literals which do not contribute to the
unsatisfiability of I in an essential way, and can therefore be discarded.

This notion of irredundant basis is unrelated to the commonly used proof-
theoretic measure which counts the number of inference steps. Also, irredundant
bases are not necessarily minimal among all inconsistent subsets of I'. For example,
{r =2 y=2 x =y, ©+#y}isinconsistent, {x = 2z, y = 2z, x # y} is an
irredundant basis for this inconsistency, but obviously it is not minimal as {z =
y, x # y} is also inconsistent. Indeed, the computation of minimally inconsistent

* Funded by SRI International, by NSF Grants CCR-0082560 and CCR-ITR-0325808,
DARPA/AFRL Contract F33615-00-C-3043, and NASA Contract NAS1-20334

(©2004 Published by Elsevier Science B. V.


http://www.elsevier.nl/locate/entcs/volume68.html

DE MOURA, RUESS, SHANKAR

bases is usually harder than the problem of computing irredundant bases. For
example, an irredundant basis for an inconsistent conjunction of variable equalities
and disequalities can be computed in O(nlog(n)) time—with n the number of
variables—whereas standard algorithms based on Boolean matrix multiplication
for producing shortest deduction paths between two variables take O(n?) time[]
Moreover, the problem of minimal bases for equality over uninterpreted functions
is NP-hard [[J].

Our starting point is the union-find structure used for deciding equality. A
canonizer constructs canonical representatives for given terms with respect to
the given equalities so that equality can be decided by syntactically comparing
canonical forms. Such canonizer-based inference systems are attractive from an
algorithmic point of view as equalities are applied in a directed way and term uni-
verses in combination procedures based on canonization are usually much smaller
than the corresponding term universes in combination methods without such a
canonizer. However, reduction to canonical forms accumulates many redundant
literals into the assumptions of corresponding proofs.

Consider, for example, the inconsistent set {x = 2/, 2/ = 2z, y = 2/, u =
f(z), u # v, v = f(y)}, where f is an uninterpreted function symbol and all
variables are existentially-quantified (constants). In processing these literals from
left to right, abstract congruence closure (ACC) [BIH], builds up a set of directed
equalities {x — z, ' — z, y — z}, with the left hand sides assumed to be larger
than the right hand sides according to some given variable ordering. The variable
arguments of the uninterpreted terms f(z) and f(y) are both replaced with their
canonical representative z, and application of congruence yields the inconsistency.
Since all input literals are used in this proof of unsatisfiability, simply tracking
dependencies or collecting assumptions from an explicitly generated proof object is
not sufficient for generating irredundant bases. The algorithm in [fj] for computing
irredundant bases by successively eliminating redundant literals has proven to be
too costly in practice.

The approach we are pursuing here is to decorate derivations with proofs and
to extract an irredundant set of assumptions from these proofs. This requires
specialized operators on proofs, but the basic inference procedures are left un-
changed. Our main contribution is a join operator on directed equality proofs for
r = z and y = z with x, y larger than 2z according to some given variable order-
ing. Obviously, taking the union of the assumptions of these two proofs leads to
imprecision as there might be a join z’ of z, y which is greater than z. However,
the symmetric difference of assumptions yields irredundant bases for these kinds
of “valley” proofs. We extend this basic insight to produce proofs with small sets
of justifications for congruence closure.

I But sub-cubic algorithms are possible for solving the related problem of finding successor
vertices of shortest paths [f].
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Fig. 1. Proof theory for U.

2 Background

Given a signature X, a Y-structure M maps each n-ary function symbol f in
¥ to an n-ary map M(f) over a suitable domain. We assume that M also maps
free variables = to domain elements M (x). The interpretation M[t] of a X-term
t in a X-structure M is defined so that M[z] = M(z), and M[f(t1,...,t,)] =
M(f)(M[t1],..., M[t.]). A X-literal is either a X-equality or a X-disequality,
and a Y-equality s = t (X-disequality s # t) is satisfied in X-structure M iff
M[s] = M[t] ( M[s] # M][t]). The interpretation of the propositional connectives
and quantifiers is standard [[[]J]. When Y-structure M satisfies a Y-formula ¢, we
write M = ¢. A Y-theory T is a class of Y-structures—the models of the theory—
closed under isomorphism. A set of Y-literals L is 7-unsatisfiable if there is no
Y-structure M in T such that M |= [ for all [ € L. Literals L are 7-valid if for
all X-structures M, M = for all [ € L.

The proof theory for the theory U of equality over uninterpreted functions is
included in Figure [l Judgements are of the form - p : ¢ with p a proof of literal
. The assumptions of proofs are obtained as follows.

A$(€s7t> = {657,5} A.T(dsyt) = {d&t}

Az(1,) =0 Az(p™h) = Az(p)

Aa(r; 0) = Aa(r) U Az(o)  Ax(egs(pr,...,pn)) = Az(p) U...U Az(p,)
The theory of equality over variables is the U theory for the empty signature 3.
A set I' of X literals is U-unsatisfiable if, and only if, there is a proof p of | with
Axz(p) CT. Proofs built up from reflexivity (1;), symmetry (p~!), and transitivity
(p; o) are referred to as equality-chaining proofs. We also make use of a number
of identities on proofs such as (1;; p) = p and cg(1s,,...,1s,) = Lyy,.t)-
Definition 2.1 Let I be a 7-unsatisfiable set of X-literals.

(i) If A C T and A is 7-unsatisfiable, then A is a 7-basis for T.

(ii) A 7-basis A of I" is minimal if there is no 7-basis A’ of I" such that |A'| < |A],
where |.| denotes the set-theoretic cardinality.

(iii) A 7-basis A of I' is irredundant if no strict subset of A is a 7-basis for I'.
3
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Since I' — ¢ is 7T-valid if, and only if, I' A = is 7 -unsatisfiable, we also say
that © C I is a 7T-basis for ¢ if © — ¢ if 7-valid. Moreover, p is an irredundant
proof for ¢ if Az(p) is an irredundant basis for ¢.

3 Equality over Variables

A set I' of equalities and disequalities over variables is inconsistent if, and
only if, there is a disequality x # y in [' such that x and y are in the same
equivalence class of the equivalence closure of the equalities in I'. Using the union-
find algorithm, a partitioning of the variables in I' is maintained in an incremental
manner (see, for example, [[J]). The operation union(x = y) merges the two
equivalence classes for x and y, and find(x) returns the canonical representative
of the equivalence class containing the variable z. A sequence of m union and find
operations can be performed in worst-case time O(m «(n)) with n the number of
variables in I" and «(n) the inverse of the Ackermann function [IT].

We extend the union-find algorithm with an operator explain(x = y) which
returns an irredundant basis for the implied equality * = y, and analyze its
complexity.

Definition 3.1 [Union-find-explain structure] Let (1, <) be a pair consisting of a
nonempty, finite set V of variables with a total ordering < on V, and let F be the
set of equalities over V. Then, a union-find-explain structure is a pair of functions
(¢: V—V,7:V — 2F) such that, for all x € V, ¢(x) < z or ¢(z) = x, and 7(x)
is a basis for z = ¢(x).

For a union-find-explain structure (¢, ), ¢*(z) denotes the canonical repre-
sentative of the equivalence class for z, and 7*(z) is a basis for x = ¢*(z).

Definition 3.2 Let (¢, 7) be a union-find-explain structure; then:

x L o(n)=a 1) L o(r) =
. ow=e o)

*

o*(o(x)) , otherwise . m(x) W (p(x)) , otherwise

where s1 W sy := (1 U s9)\(s1 N s2) denotes the symmetric difference of two sets.

Variable equalities are added incrementally to a union-find-explain structure
by the union operation.

Definition 3.3 Let (¢, m) be a union-find-explain structure; then:

union(gbﬂ)(p, r,y) =1 (¢
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We say that (¢, 7) is a union-find-explain structure for a finite set £ of variable
equalities if (¢, 7) is the result of processing the equalities in E, starting with
(Az. x, Az. (). In this case, ¢*(z) = ¢*(y) if, and only if, E — z = y is
valid. In other words, a disequality = # y is inconsistent with E if, and only if,
¢*(z) = ¢*(y). We show that an irredundant basis for implied equalities = y is
obtained by computing the symmetric difference of 7*(z) and 7*(y).

Theorem 3.4 Let (¢, 7) be a union-find-explain structure for a finite set of
variable equalities; then (for all x,y € V)

(i) 7*(x) is an irredundant basis for z = ¢*(x), and
(ii) if ¢*(x) = ¢ (y), then 7*(z) W 7*(y) is an irredundant basis for x = y.

Proof. By induction on the number of unions. These properties hold initially,
since all nodes are distinct and for all x, ¢(x) = =z, and 7(z) is empty. For
the induction step from n to n + 1, we assume that these properties hold for
(> T0)s (Ppg1s Tng1) = um’on(qﬁnﬂn)(p,x,y), and, without loss of generality,

¢"(y) < ¢*(x). Then, for any & in the equivalence class of z,
M1 () =, (2) © g1 (0, (1))
=m, (%) ¥ (m, (z) U{p} U, (y))
= (mp (&) W () U{p} Uy (y)
because the equivalence classes of x and y are disjoint, repeated assumptions can
only occur within 7% (%) W 7% (), but we know by the induction hypothesis that
this basis is irredundant.
For the second part, we need to show that for  and ¢ from the equivalence

classes of x and y, respectively, 7 (Z) W 7y ,(9) is irredundant. As we have
already seen,

T (£) = (m,(2) Wy () U {p} Um,(y) , and

Tr (9) =7,(9) -
Hence 7)., (8) 675, (9) = (w(2) 8 () U {} U (1, (3) W (y)) which we know
is irredundant by the induction hypothesis. O
Example 3.5 Let ' := {x Bw 22 y2 z}. Using the variable ordering
w < z < x <y, processing the equalities from left to right yields the following

representation of a union-find-explain structure, where “find” edges are labeled
with the elements of the corresponding basis.

P1 / P1{P2 \_ P15 P25 P3

Clearly, the equality I' — = = y is valid, since ¢*(x) = ¢*(y) = w. The irredun-
dant basis {pa, p3} for © =y is obtained as 7*(z) W n*(y) = {p1} W {p1, p2, p3}-

The bases thus obtained are irredundant by Theorem B.4 but they are not
necessarily minimal.
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Example 3.6 Let T' := {z 2 2, y 2 2, = 2 ¢}, then the minimal basis for
y = x is {p3}, but the method described above returns the basis {p1, p2}, which
is irredundant but not minimal, since union discards the implied equality z = y.

Figure ] includes an efficient implementation of union-find-explain as an exten-
sion of the usual union-find algorithm (see, for example, [[J]). Sets of assumptions
are represented using the constructors # (join), 1 (reflexivity), and e[s = t] (as-
sumption). The corresponding set of assumptions Az(p) for such a representation
p is obtained as follows.

Az(1)=10
Az(els = t]) ={e[s = t]}
Az (p1# p2) = Az(p1) W Az(p2) -

The find structure is implemented using the function p (parent) which is the
identity on variables (Az.z) initially, whereas the proof structure prf is initially 1
(reflexivity) on all inputs. justify(z) is a straightforward implementation of 7*.
Since find(x) uses dynamic path compression, computations of 7* are memoized
and # -nodes may be structure-shared. union(z,y) uses the rank structure for
selecting the new canonical variable. Because of possible path compression in the
initial finds, prf(z) and justify(z) coincide for input variables of union. We
implicitly use the identities p#1 = 1# p = p.

explain(x,y) computes the set Axz(justify(x)# justify(y)) as required by
Theorem B.4. Notice that an equality is in the assumptions Ax(p) of such a #-
dag p if, and only if, it occurs an odd number of times. We use reference counters
ref(p) for counting the number of occurrences of visited subdags. Subdags are
visited in a breadth-first manner ignoring subdags with even reference counts. As
a consequence, every 'node’ in the #-dag p is visited at most once in collect.
Finally, the breadth-first traversal in collect is obtained by a FIFO queue with
operators enqueue, dequeue, and queue_ts_empty, which ensures that a node is
dequeued only after its immediate parent nodes have been dequeued.

: o1 p2 p3 pa Ps P6
Example 3.7 Processing {z1 = x9, 23 = X2, Yy = Ta, 2 = Xy, Ty = T5, To = T4}
yields a union-find-explain structure

=

——
P17 P5 # Pe

Thus, explain(y,z3) = collect((ps # p1) #n# (p2 # p1) #n) = {p2, p3} without
visiting 7, since this subdag occurs twice.

If h(n) denotes the maximum height of the find structure after n union and
find operations, then clearly find takes at most O(h(n)) time and creates at
most O(h(n)) new # -nodes, union takes at most O(h(n)) time and space. So,

6
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p— (Az. x); prf— (Ap. 1); rank — (Az. 0); result «— L;ref — (Ap. L)

find(x) =
if not(z = p(x)) then
p(x) — find(p(x)); prf(z)— (prf(p(z))# prf(z));

return p(x)

union(z,y) =
o' find(z); y — find(y);
if rank(z") > rank(y') then
p(y) —a's pri(y’) — (prf(z) #prf(y) #elz = y))
else
p(a') —y's pri(@') « (prf(z) # prf(y) #elz = y]);
if rank(2’) = rank(y') then rank(y') < rank(y') + 1

explain(z,y) =
result — 0; ref — (Ap. 0);

collect(justify(x) # justify(y));
return result

justify(z) =
if x = p(x) then 1 else (prf(x) # justify(p(z)))

collect(p) =
register(p);
while not(queue_is_empty()) do
T« dequeue();
if is_odd(ref(r)) then
if 7 = p1 # po then register(p1); register(pz)

else if 7 = e[z = y] then result «— result U {e[z = y|}

register(p) =
if ref(p) = 0 then enqueue(p); ref(p) 1 else ref(p) —ref(p) +1

Fig. 2. Implementation of union-find-explain.

a sequence of n union operations takes at most O(n h(n)) time and space. The
explain is linear in the number of # -nodes in justify(x) # justify(y), so it takes
at most O(n h(n)) time. Since the algorithm is using the weighted-union heuristic
based on the rank structure, h(n) is bounded by log(n). In fact, the run time
of explain is bounded by O(n a(n)), since the core union-find algorithm has this
complexity and any (recursive) invocation of find and wunion produces only a
constant number of # nodes.
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4 Equality over Uninterpreted Functions

We consider the problem of inferring small justifications for problems in the theory
U of equalities over uninterpreted functions. The starting point is abstract congru-
ence closure (ACC) as defined by Kapur [§] and Bachmair and Tiwari []. ACC in-
crementally processes a finite set E of U-equalities into an equivalent configuration
V,U with V' a union-find-explain structure and U a set of directed, flat equalities

of the form x = f(xq,...,x,) with z, x; variables. Irreducible configurations are
congruence-closed in the sense that V implies x = y if U contains x = f(z1,...,x,)
and y = f(z1,...,2,). The length of any maximal derivation using the inference

rules for constructing an ACC is at most quadratic in the input size. In [J] we
define a canonizer can(y,)(t) on irreducible configurations (V,U) and terms ¢
for solving uniform word problems in U; that is, canw,y)(t1) = canw,(ts2) if,
and only if, E — t; = ty is U-valid. In other words, a disequality t; # t, is
U-inconsistent with E if, and only if, can,p)(t1) = canw,u)(t2).

Justifying congruence closure is based on the ACC procedure in [f], and the
results of Section [ for generating irredundant bases using union-find-explain are
reused below. In contrast to the developments in Section [, however, justifications
are given in terms of proof terms (see Figure [[]) instead of sets of assumptions.
This use of proof terms suggests various optimizations.

Example 4.1 Consider the following equality chains.

fi(z1) = 1 = ry = fi(@ns1)
Falwn) 2 ap 2 21 2 fu(Tn)
With these equalities one obtains proofs (i = 1,...,n)
7Ti = Tiy Pis Oi
my =gz, (p1; -5 pn)
for fi(z1) = fi(rny1) . These two proofs are essentially different in that the set of

assumptions Az(w}) and Az (7}) are incomparable with respect to set inclusion.
There are 2™ different proofs for the equality

g(fr(w1), .o, fu(z1)) = g(fr(@ni1), s fu(Tni1))

depending on whether 7} or 7% is chosen for establishing equality between the ith
argument terms, but the only irredundant proof is cg, (73, ..., 7%).

This example shows that the generation of irredundant proofs for equalities
in U is expensive in general. Therefore, we introduce a weaker criterion that
only requires irredundancy for equality chaining subproofs, that is, subproofs built
up entirely from reflexivity, symmetry, and transitivity. The operator unchain
transforms proofs to a set of non-equality-chaining subproofs. This operator is
then used for defining a localized irredundancy criterion for proofs.

8
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Definition 4.2 [Chaining]

unchain(py; ps
unchain(p!

unchain(es,

)
)
unchain(1,) =
t)
unchain(cg;(p1, .- -, pn))

={cgs(pr,-- . pn)}

If p1 = t; = ty and po F to = t3, then unchain(p;) W unchain(ps) is an
irredundant basis (Definition 1) for ¢#; = ¢3. The unchaining operator is used for
defining the notion of local irredundancy for proofs. Intuitively, a proof is locally
irredundant if all pure equality chaining subproofs are irredundant.

Definition 4.3 [Locally Irredundant Proofs|
A proof p for s =t is locally irredundant if
(i) p=1s0r p=e,, or

(ii) p=cgs(p1,---,pn), and py, ..., p, are locally irredundant, or

(iii) p = p1; p2 or p = p;~ ', and there is no proof p’ for s = ¢, such that
unchain(p’) C unchain(p), and for all 7 € wunchain(p), 7 is locally irre-
dundant.

A locally irredundant proof is not necessarily irredundant.

Example 4.4 Reconsider Example [ The proof cg,(m{, 73, ..., 7%), for exam-

ple, is locally irredundant but it is not irredundant, since the proof cg g(ﬂ'%, ce, T

has a strictly smaller set of assumptions.

Example 4.5 Consider the judgement cg;(esy,e,:); cgpeny " 1.) F flz,y) =
f(z,z) . This proof is locally irredundant but it is not irredundant, since e, .
already justifies f(z,y) = f(z, 2) using the proof cg (1., ¢,.).

The operator chain,; simply converts a set of non-equality-chaining proofs for
s = t, as obtained from the unchaining operator, into an equality chaining proof
for s =t.

Definition 4.6 Let II be a set of non-equality chaining proofs as obtained from
unchain(p) for p s = t; then:

]-t ) = (Z)
chaing (1) = ¢ p; chain,,(1 —{p}) ,p€llApFs=r
p~t; chain. (IT—{p}) , peEUAptr=s

Obviously, chaing,(I) - s = t. Equality-chaining proofs are transformed by
the proof transformer p; | p2 in order to eliminate redundancies.

Definition 4.7 For p; F s; =1t and py - so = t, define the join of p; and py as
p1 | p2:= chaing, s,(unchain(p,) W unchain(pz)).

9
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VN EE 2= 6(x)
m(x) | 7 (o(x)) , otherwise
(¢,7) o' =y
union g o (p:w,y) = (9le" = y/),nla’ = (7" (2) 75 ps 7 (W))]) Ly <
(@ly =2l 7ly = (7" () 5 g (@) L 2 <y

Fig. 3. Union-find-explain with proofs.

Notice that (p1 | p2) F s1 = so and Az(py | p2) € (Az(p) U Azx(p2)). By
a slight abuse of notation, we will just write p; | ps for p; | po=t, pi~t | po, or
p1~ 1| po~t in the following.

The justifying ACC includes a union-find-explain structure (¢, 7). Whereas, ¢
is identical to the one in Definition B.]], the 7 component is now a function from
variables to equality proof terms. The 7* and union operations on variables in
Section B are adjusted to include proofs instead of sets of assumptions (Figure f).

Definition 4.8 A union-find-explain structure (¢, ) is locally irredundant if, and
only if, for all z and y with ¢"(x) = ¢*(y), the proof 7*(z) | 7*(y) is locally
irredundant.

By replacing symmetric difference on sets of assumptions by the join operator,
irredundant proofs for variable equalities are obtained as in Theorem [.4.

Lemma 4.9 Let (¢, 1) be a union-find-explain structure with proofs for a set of
equalities (see Figure ), then:
(i) 7*(z) is a locally irredundant proof for x = ¢*(x), and

(ii) (¢, ) is locally irredundant.
Proof. Similar to Theorem B.4. O

Example 4.10 For the literals in Example B.J one obtains the union-find-explain
structure (¢, 7) with

p={r— w,z— wy— w}

= {ZE = Crw, 2 (ez,zil; e:c,w); Yy — <€y,z; ez,z71§ ecc,w)}

and a proof of x =y is e, .; e, ! because

(eaw) | (€y25 €2z €rw)
= chaing ,(unchain(e, ) W unchain(e, .; €z, €xw))
= chaing ,({esw} W{ey s, €x2, €20 })
= chaing ,({ey, €z.2})

— . —1
=€rz €y -

10
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Configurations of justifying ACC include (V,U) with V' a union-find-explain
structure and U a renaming context for representing a finite set of equalities
u= f(xr1,...,o,).

Definition 4.11 A renaming context is a finite map of bindings of the form u +—
flxy = p1,o.omy o pp) with w,zq,...,x, € V and p; F t; = z; for terms t;
(t=1,...,n).
Definition 4.12 A pair (V,U) consisting of a union-find-explain structure and
a renaming context is locally irredundant if

(i) V is a locally irredundant, and

(i) for every w— f(x1: p1,..., @y : pn) in U, p1, ..., p, are locally irredundant

proofs.

Abstract congruence closure (ACC) flattens input terms by introducing fresh
renaming variables for nested flat subterms. The initial step in processing an
equality or disequality in the ACC procedure compiles terms into variables by
iteratively replacing flat subterms f(z1,...,z,) with a renaming variable from a
possibly extended renaming context. The following canonizer includes flattening
and always returns a variable which is equal to the argument term in a possibly
extended renaming context.

Definition 4.13 For a union-find-explain structure V' = (¢, 7) and a justifying
renaming context U, define:

cangyy(x) = (¢"(x) : 7 (), U)
(¢*<U> : Cgf(pl l Tiy--+5Pn »L T'TL); 7T*<u>7Un)
if (w— f(zy:71,...,2,: 7)) €Uy

(v:ly, {v—= f(T1:p1, . xn:pn)UUL)

otherwise (with v fresh)

Can(V,U)(f(th o 7tn)) =

where (z1 : p1, Uy) = canwu)(th),
(.172 L P2, UQ) = CCL?I(MUI)(tQ), ey
(2 2 pny Up) = canwu,_(tn) -

cane,p)(t) is a canonizer in the sense that the x = y for (z,_) = canw,y)(t1)
and (y,-) = cang,uy(tz) if, and only if, ¢, = ¢, is validated by the equalities of
(V,U) [[. Moreover, this canonizer returns locally irredundant proofs for the
equality of its source and target term.

Lemma 4.14 If (V,U) is locally irredundant, and cang,i(t) = (x : p,U’), then
(i) (V,U’) is also locally irredundant, and
(ii) p is a locally irredundant proof for ¢t = x.

Proof. By induction on the structure of the term ¢, and Lemma [I.9. O

11
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A justifying ACC inference system for processing equalities and disequalities
over uninterpreted functions is described in Figure fl. Configurations (T', D, V,U)
of this inference system consist of a finite set I' of assumptions of the form e,
and ds;, a finite set D of variable disequalities ds; — (x : p1) # (y @ p2) with
p1 B s = and po bt = y, a union-find-explain structure V- = (¢, ), and a
renaming context U.

Definition 4.15 A configuration (I', D,V U) is locally irredundant if V,U is lo-
cally irredundant according to Definition [L.I3, and for every ds; — (z : p1) # (y :
p2) in D, p; and py are locally irredundant.

The eq rule in Figure f] processes input equalities s = ¢ by merging the cor-
responding decorated variables in V', and, similarly, diseq processes disequalities
s # t. Disequalities x # x are reduced to the unsatisfiable | using the bot rule,
whereas cong deduces variable equalities © = v from u =t and v =t with ¢ a flat
term, and uprop and dprop propagate variable equalities into renaming contexts
U and disequalities D, respectively. Here, dprop is applied symmetrically.

For termination, soundness and completion of undecorated versions of this abstract
congruence closure procedure see, for example, [

Theorem 4.16 Let I' be an unsatisfiable, finite set of U-equalities and -
disequalities, and let unsat(ds+,p) be an irreducible configuration with respect
to the justifying ACC inference system in Figure f] and starting configuration
(T, (A\z.z, Ax.1,),0,0), then p is a locally irredundant proof.

Proof. Clearly the initial configuration is locally irredundant. By Lemmas [£.9
and {1.14, all rules but bot preserve local irredundancy. The proof p = 7 | o
obtained by the application of the bot rule is locally irredundant, because 7 and
o are locally irredundant proofs for s = z and ¢ = x (Lemma [L.9). O

Example 4.17 Processing {z1 2 f(z3), 23 2 f(z4), 15 2 26, 13 2 25, 24 2 25}
from the left to right yields the final configuration

P1 P2 P3
Tr1 — Uy, T3 — Uz, Ts — Tg
OV i s cgy(pii pst) (ot Tl o p)})
Ty — Tg, Ty — Tg, Ul - U2

First, canonization of x; yields (x; : 1,,) and canonization of f(xy) yields
(up : 14,), where u; is a fresh variable and w; — f(zo : 1,,) is the corre-
sponding renaming. Using rule eq, variables x; and u; are merged with proof
(1,,7% p1; 1) = p1. Second, when processing z3 = f(x4), x3 canonizes to
(x3 : 1,,) and f(x4) canonizes to (ug : 1,,), where uy is fresh variable and
ug +— f(xy : 1,.,) is the corresponding renaming. Thus, z3 and us are merged
with proof p, (rule eq). Third, x5 and x4 are canonized to (x5 : 1,,) and
(x¢ : 1), respectively. Using rule eq, variables x5 and x¢ are merged with

12
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({esﬂf}urv V7 D7 U)

e (T, uniony ((t71; esy; o), 2,y), D, U")
where (z : 7, U') = canpy,p)(s) and (y : 0, U") = cangy,pn(t)
. ({ds,t}UF7 ‘/7 -D7 U)
dised TV, {ds— (:7) £ (g 0)} UD, T7)
where (z: 7, U') = cany,p)(s), and (y : o, U") = cangy ()
bot (T, V, {dst— (x:7)# (z:0)}UD, U)
unsat(ds s, 7 | 0)
uprop (T, (¢,7), D, {ur f(x1:p1y. s it PiyeeesTp i pp)UU)
(F) (¢77r)7 -D7 {ur—>f(m1 3P17---,?/3Pz‘lTau-vxn3Pn)}UU)
where ¢*(z;) =y and 7*(z;) =7
torop (L. (6.7). {dus > (@2 01) # (2 :02)} UD. U)
(Fv (¢77T)7 {ds,t = (y T l 01) ?é (Z : 02)}UD7 U)
where ¢*(z) =y and 7*(z) = 7
ur f(z1:p1y,. o Tyt pn),
(T, V, D, Flan: o e Lo
v f(xy Ty, T Th)
consg (T, V', D, {u f(x1:p1,,. s Tn: pn) VD)
where V' = uniony (cgs(p1 | 71,5 pn | ), u, )

Fig. 4. Abstract congruence closure with proofs.

proof ps. Forth, xs and x5 are canonized to (xy : 1,,) and (xg : p3), respec-
tively. Using rule eq, variables x5 and zg are merged with proof p4; p3. This
variable equality is propagated (rule uprop) to obtain the instantiated renaming
uy — f(xg : ps; p3). Finally, x4 and x5 are canonized to (x4 : 1,,) and (x¢ : p3),
respectively. Using rule eq, variables x4 and x4 are merged with proof ps; p3. This
variable equality is propagated (rule uprop) to obtain the instantiated renaming
us — f(xg : ps; p3). Using rule cong, variables u; and us are merged with proof
cg;((pa; p3) L (ps; p3)) = cgy(ps; ps~"), and the renaming uy — f(26 : pa; p3) is
removed from U.

Now, consider the implied equality f(zs) = f(x4). Its left hand side
f(z2) canonmizes to (up : cgs(ps; ps~')), whereas f(z4) canonizes to (up
cg((ps; ps) | (psi ps))) = (us @ 1uy). Thus (cg,(pa; p5~1)) | Loy = cgy(pas ps")
is a locally irredundant proof for f(z9) = f(x4). This proof also happens to be
minimal. Now, consider the implied equality f(xz9) = f(26). The right hand side
f(x6) canonizes to (uz : cg;(ps; p3)). Thus cgp(pa; ps~'); cgs(ps; ps) is a locally

13
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irredundant proof for f(xzy) = f(zg), but it is not irredundant. However, this
proof can be simplied using the following identity on proofs.

(cgp(T1,- s Tn)scgp(on, .. s0n) = cgp(mi Lo, 7 | on)

Thus we obtain the irredundant proof cg;((ps; ps=") | (ps; p3)) = cg;(pa; ps) for
fx2) = f(ze).

Lemma 4.18 Ax(cg;(m1 | o1,..., 70 | 04)) € Azx(cgy(T1, ... )i cgp(o1, ..., 00))
Proof. Using Axz(py | p2) C (Az(p1) U Az(p2)). O

In general justifying ACC does not yield irredundant proofs or even min-
imal proofs (Example [L1]), but irredundant proofs may be obtained by re-
placing equality-chaining subproofs ¢ with congruence subproofs 7 whenever
Ax(t) € Ax(o). For example, the proof cg;(0); cg;(7) might be replaced by
cgp(o L 7). In cases Az(o) and Ax(7) are incomparable with respect to set in-
clusion (as is the case in Example [I.1]), however, it is unclear which proof should
be used, since the proof transformation may now depend on the structure of the
complete proof. Therefore, it seems too expensive, in practice, to produce (glob-
ally) irredundant proofs, and, arguably, maintaining locally irredundant proofs is
a good compromise between the conflicting goals of conciseness of justifications
and associated computational costs.

5 Conclusions

We have presented systems for proving irredundant proofs for variable equality
and extended this proof-producing system to obtain “small”, that is, locally irre-
dundant proofs, for abstract congruence closure. The main characteristics of our
proof-producing extensions is that they do not change the underlying algorithms
and therefore the algorithmic advantage of canonization is maintained. Although
it is possible to maintain fully irredundant proofs for congruence closure and other
theories, this may be prohibitively expensive in practice as search is involved.

Our approach can be extended to also work for other inference systems such
as Gaussian elimination for the linear arithmetic equality theory. Polynomials are
decorated with proofs to obtain (¢o + q1x1 : 01 + ... + @upn : 0,) @ p. Such a
decoration represents a proof (p; cg(oy,...,0,)) for ' = g+ qz1+ ...+ ¢ux,, for
some source polynomial p’. Our justifying equality framework can also be applied
to obtain small proofs for a Shostak combination [{].
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